Computing and maximizing influence in linear threshold and triggering models
نویسندگان
چکیده
We establish upper and lower bounds for the influence of a set of nodes in certain types of contagion models. We derive two sets of bounds, the first designed for linear threshold models, and the second more broadly applicable to a general class of triggering models, which subsumes the popular independent cascade models, as well. We quantify the gap between our upper and lower bounds in the case of the linear threshold model and illustrate the gains of our upper bounds for independent cascade models in relation to existing results. Importantly, our lower bounds are monotonic and submodular, implying that a greedy algorithm for influence maximization is guaranteed to produce a maximizer within a ( 1− 1e ) -factor of the truth. Although the problem of exact influence computation is NP-hard in general, our bounds may be evaluated efficiently. This leads to an attractive, highly scalable algorithm for influence maximization with rigorous theoretical guarantees.
منابع مشابه
Comparison of Linear and Threshold Models for Estimation Genetic and Phenotypic Parameters of Success of Conception at First Service and Inseminations to Conception in Holstein Cattles in East Azarbayjan Province
In this research genetic and phenotypic parameters were estimated using linear and threshold models, for reproductive traits, data from 6 large industrial dairy herd of East Azerbaijan province collected by Agriculture Jihad Organization during 10 years (2001-2010). Best linear unbiased predictions of traits breeding values were estimated using Restricted Maximum Likelihood method by WOMBAT sof...
متن کاملComparison of Linear and Threshold Models for Estimation Genetic and Phenotypic Parameters of Success of Conception at First Service and Inseminations to Conception in Holstein Cattles in East Azarbayjan Province
In this research genetic and phenotypic parameters were estimated using linear and threshold models, for reproductive traits, data from 6 large industrial dairy herd of East Azerbaijan province collected by Agriculture Jihad Organization during 10 years (2001-2010). Best linear unbiased predictions of traits breeding values were estimated using Restricted Maximum Likelihood method by WOMBAT sof...
متن کاملLiu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors
In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...
متن کاملApplication of non-linear regression and soft computing techniques for modeling process of pollutant adsorption from industrial wastewaters
The process of pollutant adsorption from industrial wastewaters is a multivariate problem. This process is affected by many factors including the contact time (T), pH, adsorbent weight (m), and solution concentration (ppm). The main target of this work is to model and evaluate the process of pollutant adsorption from industrial wastewaters using the non-linear multivariate regression and intell...
متن کاملUsing the Reaction Delay as the Driver Effects in the Development of Car-Following Models
Car-following models, as the most popular microscopic traffic flow modeling, is increasingly being used by transportation experts to evaluate new Intelligent Transportation System (ITS) applications. A number of factors including individual differences of age, gender, and risk-taking behavior, have been found to influence car-following behavior. This paper presents a novel idea to calculate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016